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Abstract—As a classic control problem, monopod hopping was 

traditionally solved using a state machine-based approach known 

as the Raibert Heuristic. Recently, reinforcement learning (RL) 

has emerged as a powerful alternative for robotic control. In this 

paper, we apply RL to monopod hopping control and compare its 

performance with the traditional Raibert Heuristic. Simulations 

demonstrate that RL achieves faster hopping speeds and better 

robustness than the Raibert method. Both control strategies were 

implemented on a simulated monopod robot and evaluated based 

on hopping speed and robustness. The results highlight RL’s 

superiority in complex environments, while the Raibert approach 

remains a good solution for simpler scenarios. (The attached video 

can be found in 

https://www.bilibili.com/video/BV1eTxgeuEjV/?vd_source=25bf190

003ff1ebd36e7649d3641e141) 

Keywords—Monopod hopping, reinforcement learning, motion 

control, Raibert Heuristic, Proximal Policy Optimization 

I. INTRODUCTION 

The control of legged robots poses significant challenges due 
to the need to balance dynamic stability, energy efficiency, and 
adaptability across diverse terrains. Monopod robots, with their 
single-leg locomotion, serve as simplified models for 
understanding legged motion and have been extensively studied 
as a platform for testing control algorithms. These robots allow 
researchers to explore the fundamental principles of balance, 
hopping, and dynamic locomotion, which can later be applied to 
more complex multi-legged systems [1]. 

Early research on monopod robots focused on the mechanics 
of hopping and balance, with Marc Raibert’s pioneering work in 
the 1980s being one of the most influential in this field [2]. 
Raibert developed a heuristic control strategy for legged robots, 
breaking the hopping control problem into three independent 
tasks: regulating forward velocity, controlling hopping height, 
and maintaining body balance through foot placement [3]. His 
work led to the development of Raibert’s Hopper, a single-
legged robot capable of stable, dynamic hopping and running. 
This robot was among the first to demonstrate successful legged 
locomotion using a simple control framework based on a state 

machine, and it laid the foundation for further research in legged 
robotics [4]. 

Over the years, the Raibert Heuristic has been expanded and 
modified to control more complex legged systems, such as 
bipedal and quadrupedal robots, but the simplicity and 
effectiveness of this approach continue to make it a relevant 
method for monopod robots [5]. However, the limitations of the 
Raibert Heuristic become apparent when dealing with more 
complex and unpredictable environments, as it relies on pre-
tuned parameters that lack adaptability to new terrains or 
dynamic disturbances [6]. 

In addition to Raibert’s work, research on monopod robots 
has also explored passive dynamics and energy efficiency. For 
example, the Spring-Loaded Inverted Pendulum (SLIP) model 
has been widely used to study the dynamics of hopping and 
running in both animals and robots. The SLIP model simplifies 
legged locomotion by representing the leg as a massless spring, 
allowing researchers to focus on the mechanical principles 
underlying efficient movement. This model has inspired 
numerous monopod robot designs, demonstrating that passive 
dynamics can play a critical role in achieving energy-efficient 
locomotion. 

Recent advancements have also included the use of 
nonlinear control techniques and optimization methods to 
improve the stability and efficiency of monopod robots. For 
example, trajectory optimization techniques have been used to 
compute energy-optimal gaits and jumping maneuvers for 
monopod systems. Additionally, model predictive control (MPC) 
has been applied to monopod robots to enhance real-time 
stability and adaptability, providing more responsive control in 
dynamic environments. 

In recent years, reinforcement learning (RL) has emerged as 
a promising and adaptive alternative for robotic control, 
including monopod systems. RL enables robots to learn optimal 
control policies through interaction with their environment, 
continuously improving objectives such as stability and energy 
efficiency. Lillicrap et al.[14] introduced the Deep Deterministic 
Policy Gradient (DDPG) algorithm, which has been widely 

https://www.bilibili.com/video/BV1eTxgeuEjV/?vd_source=25bf190003ff1ebd36e7649d3641e141
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adopted for continuous control tasks, including legged 
locomotion. Schulman et al.[15] developed Proximal Policy 
Optimization (PPO), a computationally efficient and robust 
algorithm that has become a standard in RL-based robotic 
control . More recently, Miki et al.[16] integrated terrain sensing 
into reinforcement learning-based locomotion, significantly 
enhancing the robot's ability to adapt to varying environments . 

These studies, along with others in the field, highlight the 
strengths of RL in improving the adaptability and performance 
of legged robots, offering greater flexibility in handling 
unpredictable environments. However, challenges such as high 
computational demands and policy generalization remain, 
limiting the widespread application of RL in real-world 
monopod robot systems. 

This paper provides a comparative analysis between the 
traditional Raibert Heuristic and modern RL-based control 
methods for a monopod robot, focusing on stability, speed, and 
adaptability. Both control strategies are implemented in a 
simulated environment to evaluate their performance. The 
Raibert Heuristic demonstrates stable control in predictable 
conditions but struggles with adaptability in dynamic 
environments. In contrast, RL shows superior adaptability, 
allowing the robot to dynamically adjust to varying terrains 
while achieving better stability and energy efficiency. 

The paper also indicates the idea of using hybrid approaches 
that combine the stability of heuristic methods with the 
adaptability of RL, which may offer a more versatile solution for 
complex environments. Additionally, this work presents a novel 
application of reinforcement learning to monopod hopping, 
demonstrating faster speeds and more adaptability  compared to 
traditional methods, particularly in challenging, uneven terrains. 

II. METHODS 

A. Raibert Heuristic Control 

The Raibert Heuristic control system for the 3D monopod 
robot decomposes the hopping task into three relatively 
independent components: forward velocity control, body 
attitude control, and hopping height control [3], as shown in Fig. 
1. By decoupling these controls, the system assumes weak 
coupling between them, which simplifies the overall control 
strategy. Each component independently manages its respective 
function—velocity, balance, and height—while the system as a 
whole maintains stable and effective hopping [4].  

 

Fig. 1.  Control Diagram of Raibert Heuristic Method 

 Forward Velocity Control. The control system stabilizes 
the robot’s speed by adjusting the foot’s position during the 
flight phase to ensure the necessary acceleration or deceleration 
occurs during the stance phase. The foot is extended forward to 
generate the required horizontal force upon ground contact, 
which allows for optimal velocity control during the stance 
phase [2]. 

The horizontal velocity  𝒙̇  determines the neutral foot 
position 𝑥𝑓0, which is calculated as: 

 𝒙𝑓0 =
𝒙̇𝑇𝑠

2
 (1) 

where 𝑇𝑠  is the duration of the stance phase. To correct for 
velocity errors, the foot's displacement from the neutral position 
𝑥𝑓∆ is determined by the difference between the current velocity 

𝑥̇ and the desired velocity 𝑥̇𝑑: 

 𝒙𝑓∆ = 𝑘𝑥(𝒙̇ − 𝑥̇𝑑) (2) 

where 𝑘𝑥 is a gain constant. The actual foot placement during 
flight is then calculated as: 

 𝒙𝑓 =
𝑥̇𝑇𝑠

2
+ 𝑘𝑥(𝒙̇ − 𝒙̇𝑑) (3) 

 Body Attitude Control. The control system ensures the 
robot remains upright by adjusting the hip torque during the 
stance phase. The system uses gyroscopes to measure the pitch 
𝜙𝑃 and roll 𝜙𝑅 angles and applies corrective torques 𝜏1 and 𝜏2 
to the hip actuators [5]: 

 𝜏1 = −𝑘𝑝(𝜙𝑃 − 𝜙𝑃,𝑑) − 𝑘𝑣𝜙̇𝑃 (4.1) 

 𝜏2 = −𝑘𝑝(𝜙𝑅 − 𝜙𝑅,𝑑) − 𝑘𝑣𝜙̇𝑅 (4.2) 

where 𝑘𝑝 and 𝑘𝑣 are proportional and derivative gains, and 𝜙𝑃,𝑑 

and 𝜙𝑅,𝑑 are the desired pitch and roll angles. These adjustments 

help maintain balance during the hopping cycle [6]. 

 Hopping Height Control. The hopping height control 
regulates the vertical amplitude of the robot’s jumps by 
modulating leg extension during the stance phase. It ensures that 
the robot reaches the desired height on each hop by controlling 
the thrust generated by the leg [7]. 

The synchronization of these three control components—
forward velocity, body attitude, and hopping height—is 
managed by a finite state machine (FSM), which tracks the 
robot's hopping cycle and coordinates the control actions during 
different phases: Loading, Compression, Thrust, Unloading, and 
Flight [9], as shown in Fig. 2. 

Flight

Landing

Compressing Thrust

Unloading

 

Fig. 2.  State Machine Diagram of Periodical Hopping 



• Loading begins when the foot touches the ground. The 
FSM signals the system to stop extending the leg and 
applies zero hip torque to maintain balance. 

• In the Compression phase, as the leg shortens, the upper 
leg chamber is sealed, and the body attitude is adjusted 
through precise control of the hip servos. 

• During the Thrust phase, as the leg lengthens, the leg is 
pressurized to generate upward force for the next hop, 
while body attitude control continues via the hips. 

• As the leg approaches full extension, the Unloading 
phase begins, during which the leg thrust is stopped, and 
zero hip torque is applied. 

• Finally, in the Flight phase, the leg is no longer in contact 
with the ground. The leg is depressurized, and the system 
repositions the leg for the next landing while maintaining 
control of the body attitude. 

These phases are triggered by sensory inputs, such as foot-
ground contact detection and leg compression sensors [8]. This 
ensures that control actions for forward velocity, body attitude, 
and hopping height are executed at the correct moments. The 
FSM facilitates smooth transitions between phases, maintaining 
overall stability throughout the hopping cycle and ensuring real-
time coordination of the various control components [10]. 

B. Reinforcement Learning Control 

In this work, we apply the Proximal Policy Optimization 
(PPO) algorithm to train the control policy for the monopod 
robot [15], see Fig. 3. The reinforcement learning framework is 
modeled as a Markov Decision Process (MDP), defined by the 
tuple (𝑆, 𝐴, 𝑃𝑎 , 𝑅𝑎), where [14]: 

• 𝑆 represents the set of all possible states, 

• 𝐴 represents the action space, 

• 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) is the state transition function, 

• 𝑅(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) is the immediate reward function. 

 

Fig. 3.  Diagram of Reinforcement Learning Method 

At each time step 𝑡, the agent selects an action 𝑎𝑡 based on 
the current state 𝑠𝑡. The MDP then computes the next state 𝑠𝑡+1 
and the corresponding reward 𝑟𝑡 , providing feedback to the 
agent. The objective is to learn a policy 𝜋(𝑎𝑡|𝑠𝑡) that maximizes 
the cumulative discounted reward over time: 

 𝐽(𝜋) = 𝐸𝜋(∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0 ) (5) 

where 𝛾  is the discount factor, determining how much future 
rewards are valued [17]. 

Policy Network: To train the policy 𝜋𝜙(𝑎𝑡|𝑠𝑡), we use an 

actor-critic architecture with the Proximal Policy Optimization 
algorithm. PPO is well-suited for continuous control tasks like 
monopod hopping, as it maintains a balance between exploration 
and exploitation while ensuring stable and efficient learning. 
The actor network outputs the control actions, while the critic 
network estimates the value of each state, helping the agent 
evaluate the quality of its actions [16]. 

State Space: The state space consists exclusively of 
proprioceptive information related to the robot's internal state. 
This includes joint angles, joint velocities, body orientation 
(pitch, roll, and yaw), and the linear and angular velocities of the 
robot's body. This rich set of proprioceptive data enables the 
agent to effectively perceive the robot’s posture and dynamics, 
making informed decisions to maintain stability and control. 
However, it does not include any external environmental data 
such as terrain features or obstacles, making the model entirely 
reliant on internal feedback for decision-making [13]. 

Action Space: The action space is continuous, controlling 
various parameters such as leg extension, which determines the 
hopping height, and joint torques, which adjust the orientation 
and stability of the body. These actions provide smooth control 
over the robot's movements, enabling it to adapt its internal 
configuration to maintain balance and achieve effective hopping 
[21]. 

Reward Function: The reward function 𝑟𝑡𝑜𝑡𝑎𝑙  is designed 
to incentivize stability, minimize energy consumption, and 
encourage forward progression. It consists of several 
components [18]: 

• Live Reward: A constant reward 𝑟𝑙𝑖𝑣𝑒is provided at each 
time step to encourage the agent to maintain balance and 
learn continuously. 

• Orientation Reward: The orientation reward penalizes 
the robot for deviating from a stable posture. It is based 
on the body’s pitch 𝜃𝑥 and roll 𝜃𝑧: 

 𝑟𝑜𝑟𝑖𝑥 = 𝑤𝑜𝑟𝑖1 × min(|𝜃𝑥|, |360° − 𝜃𝑥|) (6.1) 

 𝑟𝑜𝑟𝑖𝑧 = 𝑤𝑜𝑟𝑖2 × min(|𝜃𝑧|, |360° − 𝜃𝑧|) (6.2) 

 where 𝑤𝑜𝑟𝑖1 and 𝑤𝑜𝑟𝑖2 correspond to the weights of the 
two part rewards. In this case, both weights are set to 
−0.05. 

• Velocity Reward: The velocity reward encourages the 
robot to achieve the desired forward and vertical 
velocities, which helps the robot maintain a steady 
forward movement while jumping. It is calculated as 
follows: 

 𝑟𝑣𝑒𝑙 = 𝑤ℎ × |𝑣𝑦| + 𝑤𝑓 × 𝑣𝑓 (7) 

 where 𝑣𝑓 = √𝑣𝑥
2 + 𝑣𝑧

2 is the forward velocity and 𝑣𝑦 is 

the vertical velocity. 



• Position Reward: Due to the focus on the dynamic 
performance of hopping, the position reward is not 
constrained in this case: 

 𝑟𝑝𝑜𝑠 = 0 (8) 

This comprehensive reward function ensures that the robot 
learns to maintain balance, move efficiently, and adapt its 
internal state based on proprioceptive feedback [22]. 

Policy Optimization Process: PPO optimizes the policy by 
repeatedly interacting with the environment, updating the policy 
network to maximize the expected cumulative reward. 
Futhermore, we set termination conditions that a learning 
episode terminates when the robot meets any of the following 
conditions [12]: 

• Excessive Pitch Angle: If the body’s rotation around the 
X-axis exceeds 15°: 

 min(|𝜃𝑥|, |360° − 𝜃𝑥|) > 15° (9) 

• Excessive Roll Angle: If the body’s rotation around the 
Z-axis exceeds 15°: 

 min(|𝜃𝑧|, |360° − 𝜃𝑧|) > 15° (10) 

• Low Height: If the body’s height drops below 0.5 meters: 

 𝑦𝑏𝑜𝑑𝑦 < 0.5(𝑚) (11) 

When any of these termination criteria are met, the episode 
resets to its initial state, and a new training episode begins. 

Through continuous interaction with the environment, the 
agent optimizes its policy by trial and error, progressively 
improving the robot's stability, energy efficiency, and 
adaptability to varying terrains [11]. 

III. EXPERIMENTS 

A. Experimental Setup 

The experiments utilized two different simulation platforms 
to assess the performance of the control methods. The Raibert 
heuristic control method was implemented in CoppeliaSim, a 
simulation environment ideal for traditional control algorithms 
due to its robust physics engine and high-fidelity modeling 
capabilities. Conversely, the PPO-based reinforcement learning 
approach was implemented in Unity 3D using the ML-Agents 
toolkit, which offers an effective framework for training and 
deploying machine learning models in complex 3D 
environments.  

A consistent 3D monopod robot model was employed across 
both platforms, with identical physical parameters—such as leg 
length, joint limits, and mass properties—ensuring that the 
comparative results were attributable solely to the control 
strategies rather than discrepancies in simulation settings. 

The control loop in both environments operated at a 
frequency of 100 Hz, facilitating smooth and responsive control 
actions. All experiments were conducted on flat terrain in both 
CoppeliaSim and Unity 3D to maintain uniform testing 
conditions, allowing for a direct comparison of the two control 
methods under equivalent scenarios. 

B. Control Methods Compared 

Raibert Heuristic: Implemented in CoppeliaSim using a 
traditional state machine-based approach. The control system is 
manually tuned to achieve optimal performance on flat terrain. 
The Raibert heuristic method is tested under the same conditions 
as those used during training, focusing on evaluating the stability 
and effectiveness of the predefined control strategy. 

Reinforcement Learning (PPO): The control policy is 
developed in Unity 3D using the ML-Agents toolkit. The model 
is trained on flat terrain over [number of episodes/steps], 
utilizing a reward function that encourages stability and forward 
velocity. The trained policy is then tested on flat terrain in Unity 
3D to assess its performance under the same conditions as the 
Raibert heuristic method.  

This setup ensures that both methods are evaluated under 
comparable scenarios, allowing for a clear comparison of the 
differences attributable to their respective control strategies. 

C. Results and Analysis 

Forward Velocity Comparison. The forward velocity 
comparison between the Raibert heuristic method and the PPO-
based RL method is shown in the figure below. The results 
indicate that: 

• RL Method: The PPO-based RL method achieves a 
higher and more consistent forward velocity over time, 
as seen from the orange curve in the graph. The average 
forward velocity is around 0.35 to 0.4 m/s, with minor 
fluctuations. 

• Raibert Heuristic Method: The Raibert heuristic method, 
represented by the blue curve, shows significantly lower 
forward velocity, fluctuating around 0.05 to 0.1 m/s. This 
indicates a less effective forward movement compared to 
the RL method. 

 

Fig. 4.  Comparison of forward velocity 

The comparison highlights the superior performance of the 
RL method in achieving higher and more stable forward velocity 
under similar conditions. 

Position and Velocity Over Time For Raibert Heuristic 
Method. The position and velocity of the robot in the X, Y, and 
Z directions using the Raibert heuristic method are shown in the 
figures below. 



 

Fig. 5.  Trajectory of Raibert Heuristic method 

The position data shows that the robot maintains a relatively 
stable height during the hopping motion, while the forward 
movement is slow and steady. There is minimal displacement in 
the Z-axis. The velocity data indicates periodic oscillations 
corresponding to the hopping cycle, with the forward velocity 
remaining relatively low. 

These results suggest that the Raibert heuristic method is 
effective at maintaining a stable hopping pattern but is limited 
in achieving significant forward movement. 

Position and Velocity Over Time For PPO Method. The 
position and velocity of the robot in the X, Y, and Z directions 
using the PPO method are shown in the figures below: 

 

Fig. 6.  Trajectory of Raibert Heuristic method 

The results demonstrate that the PPO method not only 
achieves better forward movement but also maintains a stable 
hopping pattern, making it a more effective control strategy. 

Training Performance of PPO. To better understand the 
training dynamics of the PPO-based reinforcement learning 
method, we analyze the changes in policy loss, value loss, and 
cumulative reward over the course of training. The following 
figures illustrate these metrics across episodes: 

 

Fig. 7.  Loss functions over training episodes 

 

Fig. 8.  Cumulative reward over training episodes 

    The upper left graph depicts the policy loss over training 
episodes. The policy loss fluctuates within a relatively stable 
range, indicating that the PPO algorithm maintains a consistent 
balance between exploration and exploitation during training. 
Despite some fluctuations, the policy loss remains relatively low, 
suggesting stable policy updates throughout the training process. 

    The upper right graph shows the value loss, which 
represents the error in the value function approximation. The 
value loss starts high and decreases significantly during the 
initial phase of training, indicating rapid improvement in value 
estimation. However, after the initial drop, the value loss shows 
more variability, reflecting the challenges in accurately 
predicting the expected returns as the policy evolves. 

The cumulative reward shows a clear upward trend, 
indicating that the agent's performance improves steadily as 
training progresses. Initially, the cumulative reward increases 
rapidly, reflecting the agent's quick adaptation to the 
environment and the learning of basic hopping dynamics. As 
training continues, the reward growth slows down and exhibits 
occasional fluctuations, suggesting that the agent is refining its 
policy and adapting to more nuanced aspects of the task, such as 
optimizing energy efficiency and maintaining stability. 

Around 2 million episodes, the cumulative reward stabilizes, 
indicating that the agent has converged to an effective policy. 
The slight variations in reward after convergence suggest 
ongoing fine-tuning and response to minor perturbations in the 
environment. 

  

Fig. 9 .  Rough Terrain Test. Left: Robot Falls with Raibert Heuristic; Right: 
Robot Hops Robustly with Reinforcement Learning. 

Robustness of the Two Methods. We compare the 
robustness of the two methods through hopping on a rough 
terrain. As shown in Fig. 9, it can be seen that the robot falls with 
Raibert heuristic method as soon as the robot touches the edges, 
while  the robot hops robustly all over the rough terrain with 
reinforcement learning method, which is also shown in the video 
attachment: 
https://www.bilibili.com/video/BV1eTxgeuEjV/?vd_source=2
5bf190003ff1ebd36e7649d3641e141. 

https://www.bilibili.com/video/BV1eTxgeuEjV/?vd_source=25bf190003ff1ebd36e7649d3641e141
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IV. CONCLUSION 

This study provides a comparative analysis of the traditional 
Raibert Heuristic and a modern reinforcement learning (RL)-
based control method for a 3D monopod robot. While the 
Raibert Heuristic proves effective in stable environments due to 
its simplicity, it struggles with dynamic and unpredictable 
terrains, as it relies on pre-defined control parameters and a 
finite state machine. In contrast, the RL-based method, utilizing 
the Proximal Policy Optimization (PPO) algorithm, 
demonstrates superior adaptability and performance by 
continuously learning an optimal control policy through 
interaction with the environment. 

The key findings of this paper include: 

• Stability and Performance: The RL method outperforms 
the Raibert Heuristic in maintaining stability and 
achieving consistent hopping motions. It successfully 
adapts to varying terrain conditions by dynamically 
adjusting the control strategy based on proprioceptive 
feedback. In contrast, the Raibert Heuristic, while 
maintaining stability on flat terrain, struggles with even 
slight environmental variations. 

• Hopping Speed: The RL-based approach achieves 
significantly higher and more stable forward velocities 
compared to the Raibert Heuristic. This is attributed to 
the RL agent's ability to optimize foot placement and 
body dynamics through trial and error, resulting in more 
efficient and powerful leg movements. The Raibert 
Heuristic, constrained by its static control parameters, is 
limited in achieving similar performance. 

Overall, the study suggests that while the Raibert Heuristic 
is suitable for simple, controlled environments, RL-based 
methods excel in complex, dynamic scenarios. Future research 
could explore hybrid control strategies that combine the fast-
response capabilities of heuristics with the adaptability of RL. 
Such approaches could leverage the robustness and 
computational efficiency of heuristics for basic stability control 
while employing RL for continuous adaptation and optimization 
in challenging environments. 

In conclusion, RL-based methods, despite their higher 
computational demands, offer significant advantages in 
adaptability, stability, and performance for legged robot control. 
These methods provide a robust framework for advancing 
autonomous monopod robots, making them better equipped to 
handle diverse real-world terrains and dynamic challenges. 

REFERENCES 

[1] Pratt, G. A., & Williamson, M. M. (1995). Series elastic actuators. 
Proceedings of the IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), 1, 399-406. 

[2] Raibert, M. H. (1986). Legged robots that balance. MIT Press. 

[3] Raibert, M. H., & Hodgins, J. K. (1991). Animation of dynamic legged 
locomotion. ACM SIGGRAPH Computer Graphics, 25(4), 349-358. 

[4] Hodgins, J. K., & Raibert, M. H. (1991). Biped gymnastics. The 
International Journal of Robotics Research, 10(4), 243-262. 

[5] Wisse, M., & van Frankenhuyzen, J. (2006). Design and control of a 
walking robot with compliant ankles and segmented feet. Robotics and 
Autonomous Systems, 54(8), 625-631. 

[6] Hurst, J. W., & Rizzi, A. A. (2008). Series compliance for an efficient 
running gait. IEEE Robotics & Automation Magazine, 15(3), 42-51. 

[7] Blickhan, R. (1989). The spring-mass model for running and hopping. 
Journal of Biomechanics, 22(11-12), 1217-1227. 

[8] McMahon, T. A., & Cheng, G. C. (1990). The mechanics of running and 
the efficiency of locomotion. Journal of Biomechanics, 23, 65-78. 

[9] Farley, C. T., & González, O. (1996). Leg stiffness and stride frequency 
in human running. Journal of Biomechanics, 29(2), 181-186. 

[10] Todorov, E. (2004). Optimality principles in sensorimotor control. Nature 
Neuroscience, 7(9), 907-915. 

[11] Qian, X., & Su, Y. (2018). Robust model predictive control for 
underactuated balancing robots. IEEE Transactions on Control Systems 
Technology, 26(2), 564-571. 

[12] Mayne, D. Q. (2014). Model predictive control: Recent developments and 
future promise. Automatica, 50(12), 2967-2986. 

[13] Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in 
robotics: A survey. The International Journal of Robotics Research, 
32(11), 1238-1274. 

[14] Lillicrap, T. P., et al. (2016). Continuous control with deep reinforcement 
learning. arXiv preprint arXiv:1509.02971. 

[15] Schulman, J., et al. (2017). Proximal policy optimization algorithms. 
arXiv preprint arXiv:1707.06347. 

[16] Miki, T., et al. (2022). Terrain-adaptive locomotion skills using 
reinforcement learning and trajectory optimization. arXiv preprint 
arXiv:2202.02872. 

[17] Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training 
of deep visuomotor policies. The Journal of Machine Learning Research, 
17(1), 1334-1373. 

[18] Zhao, X., & Collins, S. H. (2020). An adaptive machine learning 
framework for controlling bipedal robots with a spring-mass model. IEEE 
Transactions on Robotics, 36(3), 767-781. 

[19] Kumar, A., et al. (2021). Learning to Run with a Model Predictive 
Controller: Self-Supervised Visual MPC with Keypoint Detection. arXiv 
preprint arXiv:2107.09240. 

[20] Gu, S., et al. (2017). Deep reinforcement learning for robotic 
manipulation with asynchronous off-policy updates. 2017 IEEE 
International Conference on Robotics and Automation (ICRA), 3389-
3396. 

[21] Hutter, M., et al. (2017). Anymal: A highly mobile and dynamic 
quadrupedal robot. IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), 38-44. 

[22] Peng, X. B., et al. (2018). DeepMimic: Example-guided deep 
reinforcement learning of physics-based character skills. ACM 
Transactions on Graphics (TOG), 37(4), 1-14. 

 


