

Hopping Control of a Monopod Robot:

Reinforcement Learning vs Raibert Heuristic

Zhuochen Yuan

Tsinghua Shenzhen International

Graduate School

Tsinghua University

Shenzhen, China

xx@xx

Linqi Ye

School of Future Technology

Shanghai University

Shanghai, China

yelinqi@shu.edu.cn

Houde Liu

Tsinghua Shenzhen International

Graduate School

Tsinghua University

Shenzhen, China

liu.hd@sz.tsinghua.edu.cn

Bin Liang

Department of Automation

Tsinghua University

Beijing, China

bliang@tsinghua.edu.cn

Abstract—As a classic control problem, monopod hopping was

traditionally solved using a state machine-based approach known

as the Raibert Heuristic. Recently, reinforcement learning (RL)

has emerged as a powerful alternative for robotic control. In this

paper, we apply RL to monopod hopping control and compare its

performance with the traditional Raibert Heuristic. Simulations

demonstrate that RL achieves faster hopping speeds and better

robustness than the Raibert method. Both control strategies were

implemented on a simulated monopod robot and evaluated based

on hopping speed and robustness. The results highlight RL’s

superiority in complex environments, while the Raibert approach

remains a good solution for simpler scenarios. (The attached video

can be found in

https://www.bilibili.com/video/BV1eTxgeuEjV/?vd_source=25bf190

003ff1ebd36e7649d3641e141)

Keywords—Monopod hopping, reinforcement learning, motion

control, Raibert Heuristic, Proximal Policy Optimization

I. INTRODUCTION

The control of legged robots poses significant challenges due
to the need to balance dynamic stability, energy efficiency, and
adaptability across diverse terrains. Monopod robots, with their
single-leg locomotion, serve as simplified models for
understanding legged motion and have been extensively studied
as a platform for testing control algorithms. These robots allow
researchers to explore the fundamental principles of balance,
hopping, and dynamic locomotion, which can later be applied to
more complex multi-legged systems [1].

Early research on monopod robots focused on the mechanics
of hopping and balance, with Marc Raibert’s pioneering work in
the 1980s being one of the most influential in this field [2].
Raibert developed a heuristic control strategy for legged robots,
breaking the hopping control problem into three independent
tasks: regulating forward velocity, controlling hopping height,
and maintaining body balance through foot placement [3]. His
work led to the development of Raibert’s Hopper, a single-
legged robot capable of stable, dynamic hopping and running.
This robot was among the first to demonstrate successful legged
locomotion using a simple control framework based on a state

machine, and it laid the foundation for further research in legged
robotics [4].

Over the years, the Raibert Heuristic has been expanded and
modified to control more complex legged systems, such as
bipedal and quadrupedal robots, but the simplicity and
effectiveness of this approach continue to make it a relevant
method for monopod robots [5]. However, the limitations of the
Raibert Heuristic become apparent when dealing with more
complex and unpredictable environments, as it relies on pre-
tuned parameters that lack adaptability to new terrains or
dynamic disturbances [6].

In addition to Raibert’s work, research on monopod robots
has also explored passive dynamics and energy efficiency. For
example, the Spring-Loaded Inverted Pendulum (SLIP) model
has been widely used to study the dynamics of hopping and
running in both animals and robots. The SLIP model simplifies
legged locomotion by representing the leg as a massless spring,
allowing researchers to focus on the mechanical principles
underlying efficient movement. This model has inspired
numerous monopod robot designs, demonstrating that passive
dynamics can play a critical role in achieving energy-efficient
locomotion.

Recent advancements have also included the use of
nonlinear control techniques and optimization methods to
improve the stability and efficiency of monopod robots. For
example, trajectory optimization techniques have been used to
compute energy-optimal gaits and jumping maneuvers for
monopod systems. Additionally, model predictive control (MPC)
has been applied to monopod robots to enhance real-time
stability and adaptability, providing more responsive control in
dynamic environments.

In recent years, reinforcement learning (RL) has emerged as
a promising and adaptive alternative for robotic control,
including monopod systems. RL enables robots to learn optimal
control policies through interaction with their environment,
continuously improving objectives such as stability and energy
efficiency. Lillicrap et al.[14] introduced the Deep Deterministic
Policy Gradient (DDPG) algorithm, which has been widely

https://www.bilibili.com/video/BV1eTxgeuEjV/?vd_source=25bf190003ff1ebd36e7649d3641e141
https://www.bilibili.com/video/BV1eTxgeuEjV/?vd_source=25bf190003ff1ebd36e7649d3641e141

adopted for continuous control tasks, including legged
locomotion. Schulman et al.[15] developed Proximal Policy
Optimization (PPO), a computationally efficient and robust
algorithm that has become a standard in RL-based robotic
control . More recently, Miki et al.[16] integrated terrain sensing
into reinforcement learning-based locomotion, significantly
enhancing the robot's ability to adapt to varying environments .

These studies, along with others in the field, highlight the
strengths of RL in improving the adaptability and performance
of legged robots, offering greater flexibility in handling
unpredictable environments. However, challenges such as high
computational demands and policy generalization remain,
limiting the widespread application of RL in real-world
monopod robot systems.

This paper provides a comparative analysis between the
traditional Raibert Heuristic and modern RL-based control
methods for a monopod robot, focusing on stability, speed, and
adaptability. Both control strategies are implemented in a
simulated environment to evaluate their performance. The
Raibert Heuristic demonstrates stable control in predictable
conditions but struggles with adaptability in dynamic
environments. In contrast, RL shows superior adaptability,
allowing the robot to dynamically adjust to varying terrains
while achieving better stability and energy efficiency.

The paper also indicates the idea of using hybrid approaches
that combine the stability of heuristic methods with the
adaptability of RL, which may offer a more versatile solution for
complex environments. Additionally, this work presents a novel
application of reinforcement learning to monopod hopping,
demonstrating faster speeds and more adaptability compared to
traditional methods, particularly in challenging, uneven terrains.

II. METHODS

A. Raibert Heuristic Control

The Raibert Heuristic control system for the 3D monopod
robot decomposes the hopping task into three relatively
independent components: forward velocity control, body
attitude control, and hopping height control [3], as shown in Fig.
1. By decoupling these controls, the system assumes weak
coupling between them, which simplifies the overall control
strategy. Each component independently manages its respective
function—velocity, balance, and height—while the system as a
whole maintains stable and effective hopping [4].

Fig. 1. Control Diagram of Raibert Heuristic Method

 Forward Velocity Control. The control system stabilizes
the robot’s speed by adjusting the foot’s position during the
flight phase to ensure the necessary acceleration or deceleration
occurs during the stance phase. The foot is extended forward to
generate the required horizontal force upon ground contact,
which allows for optimal velocity control during the stance
phase [2].

The horizontal velocity 𝒙̇ determines the neutral foot
position 𝑥𝑓0, which is calculated as:

 𝒙𝑓0 =
𝒙̇𝑇𝑠

2
 (1)

where 𝑇𝑠 is the duration of the stance phase. To correct for
velocity errors, the foot's displacement from the neutral position
𝑥𝑓∆ is determined by the difference between the current velocity

𝑥̇ and the desired velocity 𝑥̇𝑑:

 𝒙𝑓∆ = 𝑘𝑥(𝒙̇ − 𝑥̇𝑑) (2)

where 𝑘𝑥 is a gain constant. The actual foot placement during
flight is then calculated as:

 𝒙𝑓 =
𝑥̇𝑇𝑠

2
+ 𝑘𝑥(𝒙̇ − 𝒙̇𝑑) (3)

 Body Attitude Control. The control system ensures the
robot remains upright by adjusting the hip torque during the
stance phase. The system uses gyroscopes to measure the pitch
𝜙𝑃 and roll 𝜙𝑅 angles and applies corrective torques 𝜏1 and 𝜏2
to the hip actuators [5]:

 𝜏1 = −𝑘𝑝(𝜙𝑃 − 𝜙𝑃,𝑑) − 𝑘𝑣𝜙̇𝑃 (4.1)

 𝜏2 = −𝑘𝑝(𝜙𝑅 − 𝜙𝑅,𝑑) − 𝑘𝑣𝜙̇𝑅 (4.2)

where 𝑘𝑝 and 𝑘𝑣 are proportional and derivative gains, and 𝜙𝑃,𝑑

and 𝜙𝑅,𝑑 are the desired pitch and roll angles. These adjustments

help maintain balance during the hopping cycle [6].

 Hopping Height Control. The hopping height control
regulates the vertical amplitude of the robot’s jumps by
modulating leg extension during the stance phase. It ensures that
the robot reaches the desired height on each hop by controlling
the thrust generated by the leg [7].

The synchronization of these three control components—
forward velocity, body attitude, and hopping height—is
managed by a finite state machine (FSM), which tracks the
robot's hopping cycle and coordinates the control actions during
different phases: Loading, Compression, Thrust, Unloading, and
Flight [9], as shown in Fig. 2.

Flight

Landing

Compressing Thrust

Unloading

Fig. 2. State Machine Diagram of Periodical Hopping

• Loading begins when the foot touches the ground. The
FSM signals the system to stop extending the leg and
applies zero hip torque to maintain balance.

• In the Compression phase, as the leg shortens, the upper
leg chamber is sealed, and the body attitude is adjusted
through precise control of the hip servos.

• During the Thrust phase, as the leg lengthens, the leg is
pressurized to generate upward force for the next hop,
while body attitude control continues via the hips.

• As the leg approaches full extension, the Unloading
phase begins, during which the leg thrust is stopped, and
zero hip torque is applied.

• Finally, in the Flight phase, the leg is no longer in contact
with the ground. The leg is depressurized, and the system
repositions the leg for the next landing while maintaining
control of the body attitude.

These phases are triggered by sensory inputs, such as foot-
ground contact detection and leg compression sensors [8]. This
ensures that control actions for forward velocity, body attitude,
and hopping height are executed at the correct moments. The
FSM facilitates smooth transitions between phases, maintaining
overall stability throughout the hopping cycle and ensuring real-
time coordination of the various control components [10].

B. Reinforcement Learning Control

In this work, we apply the Proximal Policy Optimization
(PPO) algorithm to train the control policy for the monopod
robot [15], see Fig. 3. The reinforcement learning framework is
modeled as a Markov Decision Process (MDP), defined by the
tuple (𝑆, 𝐴, 𝑃𝑎 , 𝑅𝑎), where [14]:

• 𝑆 represents the set of all possible states,

• 𝐴 represents the action space,

• 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) is the state transition function,

• 𝑅(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) is the immediate reward function.

Fig. 3. Diagram of Reinforcement Learning Method

At each time step 𝑡, the agent selects an action 𝑎𝑡 based on
the current state 𝑠𝑡. The MDP then computes the next state 𝑠𝑡+1
and the corresponding reward 𝑟𝑡 , providing feedback to the
agent. The objective is to learn a policy 𝜋(𝑎𝑡|𝑠𝑡) that maximizes
the cumulative discounted reward over time:

 𝐽(𝜋) = 𝐸𝜋(∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0) (5)

where 𝛾 is the discount factor, determining how much future
rewards are valued [17].

Policy Network: To train the policy 𝜋𝜙(𝑎𝑡|𝑠𝑡), we use an

actor-critic architecture with the Proximal Policy Optimization
algorithm. PPO is well-suited for continuous control tasks like
monopod hopping, as it maintains a balance between exploration
and exploitation while ensuring stable and efficient learning.
The actor network outputs the control actions, while the critic
network estimates the value of each state, helping the agent
evaluate the quality of its actions [16].

State Space: The state space consists exclusively of
proprioceptive information related to the robot's internal state.
This includes joint angles, joint velocities, body orientation
(pitch, roll, and yaw), and the linear and angular velocities of the
robot's body. This rich set of proprioceptive data enables the
agent to effectively perceive the robot’s posture and dynamics,
making informed decisions to maintain stability and control.
However, it does not include any external environmental data
such as terrain features or obstacles, making the model entirely
reliant on internal feedback for decision-making [13].

Action Space: The action space is continuous, controlling
various parameters such as leg extension, which determines the
hopping height, and joint torques, which adjust the orientation
and stability of the body. These actions provide smooth control
over the robot's movements, enabling it to adapt its internal
configuration to maintain balance and achieve effective hopping
[21].

Reward Function: The reward function 𝑟𝑡𝑜𝑡𝑎𝑙 is designed
to incentivize stability, minimize energy consumption, and
encourage forward progression. It consists of several
components [18]:

• Live Reward: A constant reward 𝑟𝑙𝑖𝑣𝑒is provided at each
time step to encourage the agent to maintain balance and
learn continuously.

• Orientation Reward: The orientation reward penalizes
the robot for deviating from a stable posture. It is based
on the body’s pitch 𝜃𝑥 and roll 𝜃𝑧:

 𝑟𝑜𝑟𝑖𝑥 = 𝑤𝑜𝑟𝑖1 × min(|𝜃𝑥|, |360° − 𝜃𝑥|) (6.1)

 𝑟𝑜𝑟𝑖𝑧 = 𝑤𝑜𝑟𝑖2 × min(|𝜃𝑧|, |360° − 𝜃𝑧|) (6.2)

 where 𝑤𝑜𝑟𝑖1 and 𝑤𝑜𝑟𝑖2 correspond to the weights of the
two part rewards. In this case, both weights are set to
−0.05.

• Velocity Reward: The velocity reward encourages the
robot to achieve the desired forward and vertical
velocities, which helps the robot maintain a steady
forward movement while jumping. It is calculated as
follows:

 𝑟𝑣𝑒𝑙 = 𝑤ℎ × |𝑣𝑦| + 𝑤𝑓 × 𝑣𝑓 (7)

 where 𝑣𝑓 = √𝑣𝑥
2 + 𝑣𝑧

2 is the forward velocity and 𝑣𝑦 is

the vertical velocity.

• Position Reward: Due to the focus on the dynamic
performance of hopping, the position reward is not
constrained in this case:

 𝑟𝑝𝑜𝑠 = 0 (8)

This comprehensive reward function ensures that the robot
learns to maintain balance, move efficiently, and adapt its
internal state based on proprioceptive feedback [22].

Policy Optimization Process: PPO optimizes the policy by
repeatedly interacting with the environment, updating the policy
network to maximize the expected cumulative reward.
Futhermore, we set termination conditions that a learning
episode terminates when the robot meets any of the following
conditions [12]:

• Excessive Pitch Angle: If the body’s rotation around the
X-axis exceeds 15°:

 min(|𝜃𝑥|, |360° − 𝜃𝑥|) > 15° (9)

• Excessive Roll Angle: If the body’s rotation around the
Z-axis exceeds 15°:

 min(|𝜃𝑧|, |360° − 𝜃𝑧|) > 15° (10)

• Low Height: If the body’s height drops below 0.5 meters:

 𝑦𝑏𝑜𝑑𝑦 < 0.5(𝑚) (11)

When any of these termination criteria are met, the episode
resets to its initial state, and a new training episode begins.

Through continuous interaction with the environment, the
agent optimizes its policy by trial and error, progressively
improving the robot's stability, energy efficiency, and
adaptability to varying terrains [11].

III. EXPERIMENTS

A. Experimental Setup

The experiments utilized two different simulation platforms
to assess the performance of the control methods. The Raibert
heuristic control method was implemented in CoppeliaSim, a
simulation environment ideal for traditional control algorithms
due to its robust physics engine and high-fidelity modeling
capabilities. Conversely, the PPO-based reinforcement learning
approach was implemented in Unity 3D using the ML-Agents
toolkit, which offers an effective framework for training and
deploying machine learning models in complex 3D
environments.

A consistent 3D monopod robot model was employed across
both platforms, with identical physical parameters—such as leg
length, joint limits, and mass properties—ensuring that the
comparative results were attributable solely to the control
strategies rather than discrepancies in simulation settings.

The control loop in both environments operated at a
frequency of 100 Hz, facilitating smooth and responsive control
actions. All experiments were conducted on flat terrain in both
CoppeliaSim and Unity 3D to maintain uniform testing
conditions, allowing for a direct comparison of the two control
methods under equivalent scenarios.

B. Control Methods Compared

Raibert Heuristic: Implemented in CoppeliaSim using a
traditional state machine-based approach. The control system is
manually tuned to achieve optimal performance on flat terrain.
The Raibert heuristic method is tested under the same conditions
as those used during training, focusing on evaluating the stability
and effectiveness of the predefined control strategy.

Reinforcement Learning (PPO): The control policy is
developed in Unity 3D using the ML-Agents toolkit. The model
is trained on flat terrain over [number of episodes/steps],
utilizing a reward function that encourages stability and forward
velocity. The trained policy is then tested on flat terrain in Unity
3D to assess its performance under the same conditions as the
Raibert heuristic method.

This setup ensures that both methods are evaluated under
comparable scenarios, allowing for a clear comparison of the
differences attributable to their respective control strategies.

C. Results and Analysis

Forward Velocity Comparison. The forward velocity
comparison between the Raibert heuristic method and the PPO-
based RL method is shown in the figure below. The results
indicate that:

• RL Method: The PPO-based RL method achieves a
higher and more consistent forward velocity over time,
as seen from the orange curve in the graph. The average
forward velocity is around 0.35 to 0.4 m/s, with minor
fluctuations.

• Raibert Heuristic Method: The Raibert heuristic method,
represented by the blue curve, shows significantly lower
forward velocity, fluctuating around 0.05 to 0.1 m/s. This
indicates a less effective forward movement compared to
the RL method.

Fig. 4. Comparison of forward velocity

The comparison highlights the superior performance of the
RL method in achieving higher and more stable forward velocity
under similar conditions.

Position and Velocity Over Time For Raibert Heuristic
Method. The position and velocity of the robot in the X, Y, and
Z directions using the Raibert heuristic method are shown in the
figures below.

Fig. 5. Trajectory of Raibert Heuristic method

The position data shows that the robot maintains a relatively
stable height during the hopping motion, while the forward
movement is slow and steady. There is minimal displacement in
the Z-axis. The velocity data indicates periodic oscillations
corresponding to the hopping cycle, with the forward velocity
remaining relatively low.

These results suggest that the Raibert heuristic method is
effective at maintaining a stable hopping pattern but is limited
in achieving significant forward movement.

Position and Velocity Over Time For PPO Method. The
position and velocity of the robot in the X, Y, and Z directions
using the PPO method are shown in the figures below:

Fig. 6. Trajectory of Raibert Heuristic method

The results demonstrate that the PPO method not only
achieves better forward movement but also maintains a stable
hopping pattern, making it a more effective control strategy.

Training Performance of PPO. To better understand the
training dynamics of the PPO-based reinforcement learning
method, we analyze the changes in policy loss, value loss, and
cumulative reward over the course of training. The following
figures illustrate these metrics across episodes:

Fig. 7. Loss functions over training episodes

Fig. 8. Cumulative reward over training episodes

 The upper left graph depicts the policy loss over training
episodes. The policy loss fluctuates within a relatively stable
range, indicating that the PPO algorithm maintains a consistent
balance between exploration and exploitation during training.
Despite some fluctuations, the policy loss remains relatively low,
suggesting stable policy updates throughout the training process.

 The upper right graph shows the value loss, which
represents the error in the value function approximation. The
value loss starts high and decreases significantly during the
initial phase of training, indicating rapid improvement in value
estimation. However, after the initial drop, the value loss shows
more variability, reflecting the challenges in accurately
predicting the expected returns as the policy evolves.

The cumulative reward shows a clear upward trend,
indicating that the agent's performance improves steadily as
training progresses. Initially, the cumulative reward increases
rapidly, reflecting the agent's quick adaptation to the
environment and the learning of basic hopping dynamics. As
training continues, the reward growth slows down and exhibits
occasional fluctuations, suggesting that the agent is refining its
policy and adapting to more nuanced aspects of the task, such as
optimizing energy efficiency and maintaining stability.

Around 2 million episodes, the cumulative reward stabilizes,
indicating that the agent has converged to an effective policy.
The slight variations in reward after convergence suggest
ongoing fine-tuning and response to minor perturbations in the
environment.

Fig. 9 . Rough Terrain Test. Left: Robot Falls with Raibert Heuristic; Right:
Robot Hops Robustly with Reinforcement Learning.

Robustness of the Two Methods. We compare the
robustness of the two methods through hopping on a rough
terrain. As shown in Fig. 9, it can be seen that the robot falls with
Raibert heuristic method as soon as the robot touches the edges,
while the robot hops robustly all over the rough terrain with
reinforcement learning method, which is also shown in the video
attachment:
https://www.bilibili.com/video/BV1eTxgeuEjV/?vd_source=2
5bf190003ff1ebd36e7649d3641e141.

https://www.bilibili.com/video/BV1eTxgeuEjV/?vd_source=25bf190003ff1ebd36e7649d3641e141
https://www.bilibili.com/video/BV1eTxgeuEjV/?vd_source=25bf190003ff1ebd36e7649d3641e141

IV. CONCLUSION

This study provides a comparative analysis of the traditional
Raibert Heuristic and a modern reinforcement learning (RL)-
based control method for a 3D monopod robot. While the
Raibert Heuristic proves effective in stable environments due to
its simplicity, it struggles with dynamic and unpredictable
terrains, as it relies on pre-defined control parameters and a
finite state machine. In contrast, the RL-based method, utilizing
the Proximal Policy Optimization (PPO) algorithm,
demonstrates superior adaptability and performance by
continuously learning an optimal control policy through
interaction with the environment.

The key findings of this paper include:

• Stability and Performance: The RL method outperforms
the Raibert Heuristic in maintaining stability and
achieving consistent hopping motions. It successfully
adapts to varying terrain conditions by dynamically
adjusting the control strategy based on proprioceptive
feedback. In contrast, the Raibert Heuristic, while
maintaining stability on flat terrain, struggles with even
slight environmental variations.

• Hopping Speed: The RL-based approach achieves
significantly higher and more stable forward velocities
compared to the Raibert Heuristic. This is attributed to
the RL agent's ability to optimize foot placement and
body dynamics through trial and error, resulting in more
efficient and powerful leg movements. The Raibert
Heuristic, constrained by its static control parameters, is
limited in achieving similar performance.

Overall, the study suggests that while the Raibert Heuristic
is suitable for simple, controlled environments, RL-based
methods excel in complex, dynamic scenarios. Future research
could explore hybrid control strategies that combine the fast-
response capabilities of heuristics with the adaptability of RL.
Such approaches could leverage the robustness and
computational efficiency of heuristics for basic stability control
while employing RL for continuous adaptation and optimization
in challenging environments.

In conclusion, RL-based methods, despite their higher
computational demands, offer significant advantages in
adaptability, stability, and performance for legged robot control.
These methods provide a robust framework for advancing
autonomous monopod robots, making them better equipped to
handle diverse real-world terrains and dynamic challenges.

REFERENCES

[1] Pratt, G. A., & Williamson, M. M. (1995). Series elastic actuators.
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 1, 399-406.

[2] Raibert, M. H. (1986). Legged robots that balance. MIT Press.

[3] Raibert, M. H., & Hodgins, J. K. (1991). Animation of dynamic legged
locomotion. ACM SIGGRAPH Computer Graphics, 25(4), 349-358.

[4] Hodgins, J. K., & Raibert, M. H. (1991). Biped gymnastics. The
International Journal of Robotics Research, 10(4), 243-262.

[5] Wisse, M., & van Frankenhuyzen, J. (2006). Design and control of a
walking robot with compliant ankles and segmented feet. Robotics and
Autonomous Systems, 54(8), 625-631.

[6] Hurst, J. W., & Rizzi, A. A. (2008). Series compliance for an efficient
running gait. IEEE Robotics & Automation Magazine, 15(3), 42-51.

[7] Blickhan, R. (1989). The spring-mass model for running and hopping.
Journal of Biomechanics, 22(11-12), 1217-1227.

[8] McMahon, T. A., & Cheng, G. C. (1990). The mechanics of running and
the efficiency of locomotion. Journal of Biomechanics, 23, 65-78.

[9] Farley, C. T., & González, O. (1996). Leg stiffness and stride frequency
in human running. Journal of Biomechanics, 29(2), 181-186.

[10] Todorov, E. (2004). Optimality principles in sensorimotor control. Nature
Neuroscience, 7(9), 907-915.

[11] Qian, X., & Su, Y. (2018). Robust model predictive control for
underactuated balancing robots. IEEE Transactions on Control Systems
Technology, 26(2), 564-571.

[12] Mayne, D. Q. (2014). Model predictive control: Recent developments and
future promise. Automatica, 50(12), 2967-2986.

[13] Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research,
32(11), 1238-1274.

[14] Lillicrap, T. P., et al. (2016). Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971.

[15] Schulman, J., et al. (2017). Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

[16] Miki, T., et al. (2022). Terrain-adaptive locomotion skills using
reinforcement learning and trajectory optimization. arXiv preprint
arXiv:2202.02872.

[17] Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training
of deep visuomotor policies. The Journal of Machine Learning Research,
17(1), 1334-1373.

[18] Zhao, X., & Collins, S. H. (2020). An adaptive machine learning
framework for controlling bipedal robots with a spring-mass model. IEEE
Transactions on Robotics, 36(3), 767-781.

[19] Kumar, A., et al. (2021). Learning to Run with a Model Predictive
Controller: Self-Supervised Visual MPC with Keypoint Detection. arXiv
preprint arXiv:2107.09240.

[20] Gu, S., et al. (2017). Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. 2017 IEEE
International Conference on Robotics and Automation (ICRA), 3389-
3396.

[21] Hutter, M., et al. (2017). Anymal: A highly mobile and dynamic
quadrupedal robot. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 38-44.

[22] Peng, X. B., et al. (2018). DeepMimic: Example-guided deep
reinforcement learning of physics-based character skills. ACM
Transactions on Graphics (TOG), 37(4), 1-14.

